
Module-5: Homeomorphism

In studying group theory, metric spaces we have observed structure preserving map-

pings such as isomorphism, isometry. In this module we will discuss structure preserving

mappings of topological spaces.

Definition 1. A continuous map f : X → Y between topological spaces is said to be a

homeomorphism if there exists a continuous map g : Y → X such that g ◦ f = 1X and

f ◦ g = 1Y .

Clearly, here g is actually f−1. So if O is an open set of X then the inverse image of

O under f−1 is the same as the image of O under the map f . The same thing happens

in case of closed sets. So we can define a homeomorphism in the following way.

Theorem 1. A mapping f : X → Y between two topological spaces is a homeomorphism

if and only if it is continuous and open or closed.

Proof. Since f is a homeomorphism there exists g : Y → X such that g ◦ f = 1X and

f ◦ g = 1Y . This means that f(U) = g−1(U) which is open.

Example 1. A function f : R → R defined by f(x) = ax + b, where a 6= 0 is a

homeomorphism.

Proof. g(y) = f(y)−b
a

is the inverse mapping. Continuity is clear.

Example 2. Now we can observe that any two same type of intervals are homeomorphic.

Without loss of generality let us consider open intervals (0, 1) and (3, 4). The mapping

f : (0, 1) → (3, 5), defined by f(x) = ax + b gives a homeomorphism. We have just to

choose a, b suitable real numbers.
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Example 3. This example shows that R and (0,∞) are homeomorphic.

Proof. Let f : R → (0,∞) defined by f(x) = ex. The following diagram clearly shows

that f is a homeomorphism.

Example 4. This example shows that unit square and unit circle are homeomorphic.

Proof. The following diagram clearly shows the homeomorphism.

Example 5. Consider Bn ⊂ Rn be the open unit ball, and if we define a map f : Bn → Rn

by

f(x) =
x

1− |x|
.

Then this gives a homeomorphism from Bn to Rn. An easy computation shows that

g : Rn → Bn defined by

g(x) =
x

1 + |x|
is the continuous inverse of f .

Example 6. Next we present an example of a homeomorphism between sphere S2 and

cube C = {(x, y, z) : max{x, y, z} = 1}. First we define : C → S2 by the mapping

f((x, y, z)) =
(x, y, z)√
x2 + y2 + z2

.

Now g : S2 → C defined by

g((x, y, z)) =
(x, y, z)

max{|x|, |y|, |z|}

gives the inverse of f .
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Example 7. The mapping p : [0, 1) → S1 defined by p(x) = e2πix is a continuous

bijection, which is not a homeomorphism.

Let Sn denote the n-dimensional sphere {x ∈ Rn+1 : ‖x‖ = 1} taken with the subspace

topology. We claim that removing a single point from Sn gives a space homeomorphic

to Rn. Which point we remove is irrelevant because we can rotate any point of Sn into

any other; for convenience we choose to remove the point N = (0, 0, . . . , 0, 1). Now the

set of points of Rn+1 which have zero as their final coordinate, when given the induced

topology, is clearly homeomorphic to Rn.

We define a function h : Sn \ {N} → Rn, called stereographic projection, as follows.

For any x ∈ Sn \ {N}, let h(x) be the point of intersection of Rn and the straight line

determined by x and N . Clearly h is bijective. Let O be an open set in Rn, we construct

a new set U in Sn whose points are the points of intersection of the straight line segments

which start at N and pass through points of O, except the point N(See the diagram in

the next page). Then O is open in Sn. But h−1(O) is precisely the set U . Therefore

h−1(O) is open in Sn \ {N}. This establishes the continuity of h and a precisely similar

argument deals with h−1. Therefore h is a homeomorphism.
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Definition 2. A property say P of a topological space is said to be topological property if

when ever two topological spaces X and Y are homeomorphic and one posses the property

then the other will posses the property.

Example 8. Let X = R and let d be the usual metric on R. Let Y = (0, 1) (the open

interval) and let ρ be the usual metric on (0, 1). Then X and Y are homeomorphic as

topological spaces, but (X, d) is complete and (Y, ρ) is not. So the completeness is not a

topological property.

Theorem 2. Both T1 ness and Hausdorffness are topological property.

Proof. Let X and Y be two topological spaces, f : X → Y be a homeomorphism and X

be T1. Now if F be a finite set of Y then |f−1(F )| = |F | and hence f−1(F ) is closed and

f being closed F = f(f−1(F )) is also closed. Hence Y is T1.

Let f : X → Y be a homeomorphism, X be Hausdorff and let x 6= y be two distinct

points in Y . Choose u and v be unique preimages of x and y respectively. Then there exist

disjoint open sets U and V in X containing x and y respectively. Then using openness

of f we get disjoint open sets f(U) and f(V ) containing x 6= y respectively. This proves

that proved that Y is Hausdorff.

The following result will be needed in the study of manifold. By a disc we shall mean

any space homeomorphic to the closed unit disc D in R2. If A is a disc, and if h : A→ D

is a homeomorphism, then h−1(S1) is called the boundary of A and is written ∂A.
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Theorem 3. Any homeomorphism from the boundary of a disc to itself can be extended

to a homeomorphism of the whole disc.

Proof. Let A be a disc and choose a homeomorphism h : A → D. Given a homeomor-

phism g : ∂A → ∂A we can easily extend hgh−1 : S1 → S1 to a homeomorphism of all

of D as follows. Send 0 to 0, and if x ∈ D \ {0} send x to the point ‖x‖hgh−1
(

x
‖x‖

)
.

In other words extend conically. If we call this extension f , then h−1fh extends g to a

homeomorphism of all of A as required.

We have already discussed about finite product topology. One can observe easily that

each projection map is continuous. Let us examine the following example.

Example 9. If we view points in the unit circle S1 in R2 as angles θ, then polar coordi-

nates give a homeomorphism f : S1×(0,∞)→ R2\{0} defined by f(θ, r) = (rcosθ, rsinθ).

This is one-to-one and onto since each point in R2, other than the origin has unique polar

coordinates (θ, r). To see that f is a homeomorphism, just observe that it takes a basic

open set U × V , (where U is an open interval (θ0, θ1) and V is an open interval (r0, r1))

to an open polar rectangle and such rectangles form a basis for the topology on R2 \ {0},

as a subspace of R2. By restricting f to a product S1 × [a, b] for 0 < a < b we obtain

a homeomorphism from this product to a closed annulus in R2, the region between two

concentric circles.

Example 10. A product S1×[1, 2] is homeomorphic to a cylinder as well as to an annulus.

If we use cylindrical coordinates (r, θ, z) in R3 then a cylinder is specified by taking r to

be a constant 1, letting range over the circle S1, and restricting z to an interval [1, 2].

Consider the spaces Con-

sider [0, 1] and R. This following Theorem shows that we cann’t hope a Theorem like

Cantor Bernstein Theorem.
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